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Figure 1: Our Map It Anywhere (MIA) data engine empowers generalizable Bird’s Eye View (BEV) map
prediction from First-Person View (FPV) images. Left: MIA enables seamless automatic curation of quality
FPV & semantic BEV map data from crowd-sourced platforms, Mapillary & OpenStreetMap. Right: Both as
a tool for training & benchmarking, MIA enables research towards anywhere map prediction. A simple model
(Mapper) trained on data from MIA better generalizes on both held-out cities (MIA-OOD) & existing benchmarks,
while state-of-the-art baselines trained on conventional autonomous vehicle datasets struggle.

Abstract

Top-down Bird’s Eye View (BEV) maps are a popular representation for ground
robot navigation due to their richness and flexibility for downstream tasks. While
recent methods have shown promise for predicting BEV maps from First-Person
View (FPV) images, their generalizability is limited to small regions captured by
current autonomous vehicle-based datasets. In this context, we show that a more
scalable approach towards generalizable map prediction can be enabled by using
two large-scale crowd-sourced mapping platforms, Mapillary for FPV images
and OpenStreetMap for BEV semantic maps. We introduce Map It Anywhere
(MIA), a data engine that enables seamless curation and modeling of labeled map
prediction data from existing open-source map platforms. Using our MIA data
engine, we display the ease of automatically collecting a dataset of 1.2 million
pairs of FPV images & BEV maps encompassing diverse geographies, landscapes,
environmental factors, camera models & capture scenarios. We further train
a simple camera model-agnostic model on this data for BEV map prediction.
Extensive evaluations using established benchmarks and our dataset show that
the data curated by MIA enables effective pretraining for generalizable BEV map
prediction, with zero-shot performance far exceeding baselines trained on existing
datasets by 35%. Our analysis highlights the promise of using large-scale public
maps for developing & testing generalizable BEV perception, paving the way for
more robust autonomous navigation.
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1 Introduction

Bird’s Eye View (BEV) maps are an important perceptual representation for ground robots. Across
various applications such as autonomous driving [3, 13, 19, 29], offroad navigation [1, 17, 24, 33],
and localization [17, 30], prior work has demonstrated the simplicity of reasoning through the BEV
perspective, making it also attractive for many downstream tasks such as path planning [14, 26]. To
enable wide deployment of BEV maps as a perceptual representation, there is a requirement for a
general map prediction building block that performs robustly across different domains and supports
effective adaptation to specific tasks/environments.

Despite tremendous advancements in predicting BEV maps from First Person View (FPV) images [13,
23, 29], we find that achieving good out-of-the-box predictions across diverse scenarios remains
challenging. This shortcoming mainly stems from the current training & testing paradigm on limited-
scale datasets collected using autonomous vehicle (AV) platforms [4, 5, 20, 32, 36]. While these
benchmarks have massively propelled the field, they are principally limited in capturing large-scale
diversity due to the time and cost associated with manual labeling, the limited deployment range, and
finally, the use of specific sensor configurations on current AV stacks.

We believe that a complementary training & testing paradigm is necessary to assess the generalizability
& robustness of BEV mapping, paving the way for anywhere deployment. Hence, starting from first
principles, we formulate the key requirements for generalizable BEV mapping as: (a) being able to
provide top-down information of key navigation classes, (b) ability to be used by different agents and
across different operating regimes, for example, sidewalk prediction is more critical for autonomous
wheelchairs, (c) perform reasonably out-of-the-box in unseen locations supporting quick adaptation,
and (d) easily adaptable to different hardware configurations such as camera models.

In this context, we explore the question of “How can one collect a dataset to empower generalizable
BEV mapping?” Specifically, to support research on generalizable BEV mapping, such a dataset
needs to (a) contain diverse geographies, terrain types, time of day, and seasons, (b) capture scenarios
beyond on-the-road driving, (c) support various camera models, and (d) consists of well-distributed
classes and labels for supporting navigation.

To construct such a dataset, our key insight is to leverage two disjoint, crowd-sourced, and world-scale
public mapping platforms: Mapillary for First-Person View (FPV) images and OpenStreetMap for
Bird’s Eye View (BEV) semantic maps. Both open-source platforms provide the tools necessary to
associate crowd-sourced FPV images with semantic raster maps used for everyday human navigation.
We introduce MIA, a data engine which taps into the potential of these mapping platforms to enable
seamless curation and modeling of labeled data for generalizable BEV map prediction. Specifically,
our data engine enables an evergrowing BEV dataset and benchmark, which exhibits world-scale
diversity and supports research on both universal & environment-specific deployment.

In this paper, to showcase the potential of our data engine, we make the following key contributions:

1. We open-source our MIA data engine for supporting automation curation of paired world-scale
FPV & BEV data, which can be readily used for BEV semantic map prediction research.

2. Using our MIA data engine, we release a dataset containing 1.2 million high quality FPV image
and BEV map pairs covering 470 km2, thereby facilitating future map prediction research on
generalizability and robustness.

3. We show that training a simple camera intrinsics-agnostic model with our released datasets results
in superior zero-shot performance over existing state-of-the-art baselines on key static classes,
such as roads and sidewalks.

4. Through analysis of current performance in urban and rural domains of our benchmark, we show
that significant research remains to enable generalizable BEV map prediction.

Overall, MIA establishes a diverse evergrowing dataset & benchmark for map prediction research and
showcases how commodity public maps can empower generalizable BEV perception tasks (Fig. 1).

2 Related Work

Bird’s Eye View Map Prediction: BEV map prediction involves predicting top-down semantic
maps from various sensory modalities to facilitate downstream robotic tasks. Some works rely solely
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Table 1: Statistics showcasing the broader scale of MIA in comparison to prior BEV Datasets.
Taxonomy: U: Urban, S: Suburban, R: Rural, O: Offroad, BN: Boston, SP: Singapore. "-": Attributes are
not available. "*": MGL is a BEV localization dataset and does not provide semantic BEV maps suitable for
map prediction. "# BEV Annotated Frames": Readily available BEV data. "Automatic Curation": No human
intervention in the collection and annotation of the dataset.

Dataset Locations km2

covered
# BEV Annotated

Frames
# Camera

Models
Domain types Capture Platform Automatic

CurationU S R O Car Bik Ped

Argoverse [5] 2 in US 1.6 [32] 22K 2 ✓ X X X ✓ X X X
Argoverse 2 [36] 6 in US - ∼108K [38] 2 ✓ X X X ✓ X X X
KITTI-360-BEV [13] 1 in DE 5.3 83K 2 X ✓ ✓ X ✓ X X X
NuScenes [4] BN, SP 5.6 40K 2 ✓ ✓ X X ✓ X X X
Waymo [32] 3 in US 76 [32] 230K 2 ✓ ✓ X X ✓ X X X
MGL* [30] 12 in US/EU - 760K 4 ✓ ✓ ✓ X ✓ X X X
MIA (Ours) 6 in US 470 1.2M 17 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

on LiDAR [18], others on multi-view cameras [27], and some on both [21, 41]. These approaches
rely on modalities that are expensive and difficult to calibrate. Recently, a growing number of works
use monocular cameras [12, 13, 22, 23, 28, 29], as they are attractive for their ease of deployment,
reduced cost, and higher scalability. However, all these works still rely on current autonomous driving
datasets for labels, which limits the scalability of data collection. To address this limitation, SkyEye
[13] uses more available front-view semantics to build map predictors without explicit BEV maps.
However, this method relies on ground truth FPV semantic masks, which are costly to annotate and
scale. In contrast, MIA leverages two readily available world-scale databases to provide diverse and
accurate supervision, avoiding the high cost of equipment and manual labor.

Another line of related work is the task of matching FPV images with BEV maps that can be satellite-
based [15, 40], planimetric [30, 37], or multi-modal [31]. They often employ techniques to predict a
BEV feature map given an FPV image. While useful for retrieval or localization, these feature maps
cannot benefit downstream tasks without complex learned decoders, unlike predicted semantic BEV
maps, which downstream algorithms like path planning can readily consume.

Datasets for BEV Map Prediction: Existing BEV map prediction datasets are often derived from
multi-modal autonomous driving datasets [4, 5, 12, 13, 32, 36] that target various tasks, including
BEV prediction. These pioneering works depend on manually collected data from costly LiDARs,
hence requiring careful calibration with camera setups to ensure accurate correspondence between
FPV & BEV data. The BEV is generated by accumulating semantically labeled LiDAR point clouds
& then splatting them to BEV, allowing them to capture dynamic and static classes. However, these
approaches are principally limited in both scale and diversity due to their high cost, hindering
model generalizability. In contrast, MIA uses data available on crowd-sourced platforms and can thus
obtain FPV-BEV pairs globally, achieving broader diversity & scale as shown in Table 1.

Crowd-sourced Datasets for Learning Geometric Tasks: Crowd-sourced platforms enable open-
source contributors to upload diverse in-the-wild data, significantly empowering generalizability in
geometric learning tasks. One such notable platform is Mapillary [7], which hosts over 2 billion
(and growing) crowd-sourced street-level images from various locations worldwide, captured by
different cameras across all seasons and times. Mapillary has been notably used for tasks such
as depth estimation [2], lifelong place recognition [35], and visual localization [16, 30]. Most
related to our work, OrienterNet [30] addresses visual localization within a large top-down map,
curating a large-scale localization dataset provided by crowd-sourced platforms, Mapillary [7] for
FPV images and OpenStreetMap [8] (OSM) for large BEV maps. However, the OrienterNet pipeline
for rasterizing maps is not suitable for BEV prediction as it renders large maps, mimics OSM style,
and includes graphical elements/labels irrelevant to the map prediction task. MIA further refines the
OrienterNet pipeline by enabling automatic curation and collection of semantic maps, alignment
of BEV renders with satellite images, and inference of missing OSM sidewalk geometries, thus
providing rich semantic maps that are ready for BEV map prediction.

3 MIA Data Engine

To construct a dataset for generalizable BEV mapping, we develop a scalable data engine that
generates high-quality, diverse FPV-BEV pairs with rich semantic labels. This process, summarized
in Fig. 2 and detailed below, follows the criteria discussed in Section 1.
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Figure 2: Overview of how the MIA data engine enables automatic curation of FPV & BEV data.
Given names of cities as input from the left, the top row shows FPV processing, while the bottom row
depicts BEV processing. Both pipelines converge on the right, producing FPV, BEV, and pose tuples.

3.1 First Person View (FPV) Retrieval

Mapillary: For FPV retrieval, we leverage Mapillary [7], a massive public database, licensed under
CC BY-SA, with over 2 billion crowd sourced images. The images span various weather and lighting
conditions collected using diverse camera models and focal lengths. Furthermore, images are taken
by pedestrians, vehicles, bicyclists, etc. This diversity enables the collection of more dynamic and
difficult scenarios critical for anywhere map prediction. However, this massive pool of data is not
readily amenable to deep learning as it contains many noisy, distorted, and incorrectly registered
instances. Thus far, few works, such as [30], have leveraged such data providing an impressive
retrieval and undistortion pipeline. However, the work relied on careful and manual curation of
limited camera models and scenarios. Such approaches are not scalable and cannot leverage the
powerful quantity and diversity of Mapillary. Hence, we further refine the OrienterNet [30] data
curation framework and develop a fully automated curation pipeline that can harness the full potential
of the extensive Mapillary database. We describe the pipeline in the following sections.

FPV Pipeline: As demonstrated in Fig. 2, the FPV pipeline starts by manually inputting a list of
locations of interest, which can be as simple as inputting the name of the location or as specific
as specifying the GPS bounds. The pipeline then converts these bounds to a list of zoom-14 tiles
and uses the publicly exposed Mapillary APIs to query for any image instance within these tiles.
The retrieved instances are then geospatially filtered to ensure they lie within the exact boundaries
of interest. Given the retrieved image IDs, we use another Mapillary endpoint to retrieve image
metadata, which includes coordinates rectified through structure from motion, camera information,
poses, and timestamps, amongst other details that we use for filtering in the subsequent stage.

We develop the filtering pipeline by observing hundreds of FPV & BEV pairs and identifying the
correlations between good-quality FPVs and their corresponding metadata. The criteria we used
included a recency filter, a camera model filter spanning 19 camera models with good RGB quality, a
location/angle discrepancy filter that computes the difference between Structure from Motion (SfM)
computed and recorded poses as a proxy for measuring the quality of the geo-registration, and a
camera type filter that only includes perspective and fisheye. To promote spatial diversity over sheer
quantity, we filter out images within a 4-meter radius of another image from the same sequence. After
filtering, we retrieve the RGB images from Mapillary and feed them through an undistortion pipeline
adapted from [30]. The undistortion is critical for fisheye images to ensure their pixel-aligned features
can be correctly lifted into BEV space. Using this pipeline, we can retrieve high-quality images from
anywhere in the world, tapping into the power of the Mapillary platform.

3.2 Birds Eye View (BEV) Retrieval

Open Street Map (OSM): For BEV retrieval, we leverage OSM [8], a global crowd-sourced mapping
platform open-sourced under Open Data Commons Open Database License (ODbL). OSM provides
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rich vectorized annotations for streets, sidewalks, buildings, etc. However, OSM data cannot be easily
used for map prediction as (a) OSM often does not encode critical sidewalk geometry, (b) structured
formats like OSM maps prove difficult to train on, (c) off-the-shelf rendering pipelines target human
consumption often encoding information irrelevant for BEV prediction (such as textual labels) and
do not care about pixel aligning maps with satellite imagery, thereby encoding inaccurate road widths
in many instances. Recognizing the need to create our own rasterization pipeline, we build on top
of the MIT-licensed MapMachine project [34] and study hundreds of satellite/map pairs to achieve
rasterization that is more pixel-aligned with satellite imagery. We further carefully map the hundreds
of elements in OSM to a handful of informative dominant semantic labels.

TerrainBuildingCrossingSidewalkParkingRoad Robot

FPV Satellite Default Ours FPV Satellite Default Ours

Figure 3: Comparison of default MapMachine-style rendering with the MIA-style. The figure
shows our rendering removes irrelevant information, clusters key semantic categories, aligns better
with satellite and is able to provide more accurate sidewalk geometry correctly. Satellite imagery is
not part of the MIA data engine and was obtained from [11] only for tuning map rendering.

BEV Generation Pipeline: BEV retrieval starts after the filtering stage in FPV retrieval as illustrated
in Fig. 2. Given coordinates in the World Geodetic System (WGS-84) frame for each image, we
project each point onto a Cartesian UTM coordinate frame, estimated separately for each city/location.
Next, we calculate an ego-centric bounding box of size (α+ β + δ)2 at a resolution of ρ meters per
pixel. Here, α represents the requested image dimension, β = α− α

cos(π
4 ) is the padding added to

accommodate rotations without introducing empty space, and δ is the padding added to avoid missing
any OSM elements that may not fall within the original box. To adhere to the OSM API, we project
boxes back to WGS-84 coordinates before retrieving OSM data for every image. We then utilize our
version of MapMachine (enhanced to infer missing sidewalks from OSM) with a carefully tuned,
satellite-aligned map style to render the data into SVG format. Next, we rotate the rendered image so
that the robot is looking ‘up’ in the BEV image plane, aligning it with the forward direction of the
FPV plane. Finally, we rasterize the SVG into a semantic mask containing six static classes (Road,
Parking, Sidewalk, Crossing, Building & Terrain), as shown in Fig. 3, to produce the final BEV.

4 Empowering Map Prediction with the MIA Data Engine

4.1 Sampling the MIA Dataset

We show the utility of the MIA data engine by sampling six different urban-centered locations,
extending to the suburbs. We selected highly populated cities - New York, Chicago, Houston, and Los
Angeles - to collect challenging scenarios with diverse and dense traffic. Additionally, we included
Pittsburgh and San Francisco for their unique topologies. For BEV retrieval, we set α = 224, δ = 50,
and ρ = 0.5, resulting in what we believe is the largest public BEV prediction dataset, comprising
approximately 1.2 million FPV-BEV pairs, as shown in Table 1. To illustrate the diversity of the data,
we adapt the coverage metric proposed by [32] in which each image instance covers a radius of 150
meters around its pose. For our sampled dataset, we calculate the coverage at a radius of 112 meters
consistent with our chosen α value. As shown in Table 1, our sampled dataset covers 470 km2, far
surpassing all existing BEV prediction datasets by 6×. This highlights the immense potential of our
scalable MIA data engine to produce large quantities of annotated FPV-BEV pairs covering extensive
geographies and with varying camera models and focal lengths, as highlighted in Fig. 4.

To further benchmark the generalization capability of map prediction models in more extreme settings,
we further sample a small (∼ 1.1K) rural/remote dataset, which we denote as MIA-Rural. This
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Time of Day

Season / Weather

Vehicle Domain

Pedestrian Domain

Figure 4: Samples from the MIA dataset: Highlighting diversity in time of day, seasons, weather
and capture scenarios from vehicles & pedestrians.

dataset has a distribution very different from the urban-centered samples. We selected locations with
distinct visual appearances, namely Willow (Alaska), Ely (Nevada), and Owen Springs (Australia).
To push the boundaries of generalization testing, we disabled the camera model filter for this test set,
thereby incorporating a variety of challenging camera models into this extreme dataset.

4.2 Mapper: Training a camera intrinsics-agnostic baseline model

We train a model, Mapper, with MIA to validate the need for such a large-scale and diverse dataset
by testing its generalization capability. Leveraging the diversity of the Mapillary dataset requires a
model architecture capable of handling various image characteristics, such as focal lengths and image
size. Additionally, following OrienterNet [30], it is reasonable to assume that the robot or phone has
orientation information (IMU), and we aim to incorporate this information into our map predictions.

Our goal is to learn a model that takes in a monocular image I to predict a gravity-aligned BEV
semantic map Y. Formally, given an image I ∈ R3×H×W , its intrinsic matrix C ∈ R3×3, and its
extrinsic matrix E ∈ R3×4, we seek to produce a multi-label binary semantic map in gravity-aligned
frame Y ∈ RX×Z×K where K is the number of semantic classes. To achieve this, we build on
OrienterNet [30], designed for top-down map localization, as the front-end architecture. This choice
accommodates different camera characteristics and pose information from IMUs, thereby leveraging
the orientation data from OSM and Mapillary. We add a decoder head on the BEV features (obtained
post 2D-to-3D lifting of FPV features) to predict a semantic map, thereby maintaining simplicity in
the model architecture. Furthermore, to improve generalization capability, we replace the ResNet
encoder with the DINOv2 encoder [25]. For training, we resize and pad images to a 512 x 512 square,
applying weighted Dice and Binary Cross Entropy Loss to the BEV pixels within the image frustum.
We use DINOv2 ViT-B/14 [25] with registers [9] as the image encoder. We further augment the
dataset with brightness, contrast, and color jittering. We train with a batch size of 128 for 15 epochs,
which takes approximately 4 hours using 4 NVIDIA-H100 GPUs. The supplementary material
provides more details on the model and training, along with a figure of the model pipeline.

5 Experimental Setup

To evaluate generalizability, we test our Mapper model and baselines on multiple datasets, including
our diverse MIA dataset and conventional map prediction datasets.

Conventional Datasets: We evaluate our model on BEV map segmentation benchmarks: NuScenes
[4] and KITTI360-BEV [13], to demonstrate the generalizability of a model trained on MIA when
applied to established datasets. We follow the BEV generation procedure in [28] for NuScenes. Both
datasets are collected from on-road vehicles and present challenges such as occlusions, different
times of day, and varying weather conditions. We adhere to the conventional(geographically non-
overlapping) data set splits: Roddick et al.’s [28] split for NuScenes and Gosala et al.’s split [13]
for KITTI360-BEV. Since we focus on static class map prediction, we exclude dynamic elements
from the dataset labels before training. For NuScenes, we use only the static map layers, and for
KITTI360-BEV, we remove dynamic object labels. In the experiments, we use the front-facing camera
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data to evaluate monocular camera BEV map prediction. Class mappings between the datasets are
provided in Table 5 of the appendix.

MIA Dataset: We utilize the MIA dataset to assess performance in diverse urban and rural settings not
captured by previous datasets, including held-out environments. Specifically, we split our dataset into
two settings: MIA-ID (New York, Los Angeles, San Francisco, Chicago) represents in-distribution
urban areas, MIA-OOD (Houston, Pittsburgh) tests the generalization ability in held-out urban settings.
Furthermore, we use MIA-Rural to provide a more challenging out-of-distribution evaluation. For
each location, we generate an 80% train / 10% validation / 10% test split, ensuring the splits are
geographically disparate as illustrated in Fig. 8 of the appendix.

Metrics: We adhere to standard conventions [13, 29] to calculate the Intersection-over-Union (IoU)
score using binarized predictions with a threshold of 0.5. The IoU score is computed over the
observable area as defined by the visibility mask, based on LiDAR observations or the visibility
frustum. Since there is no LiDAR sensing in the MIA dataset, we generate a heuristic-based visibility
mask by raycasting from the robot’s position, ending 4 pixels into a building. To be consistent with
SkyEye evaluations [13], in KITTI360-BEV, we also include occluded areas within image frustum for
IoU calculation. For all datasets, we performed comparisons over a 50m x 50m area with a resolution
of 0.5m/pixel. Consistent with prior work [13, 29], we report the macro-mean IoU over all classes. In
addition, for a fair comparison across different methods and datasets, we report the macro-mean IoU
over the two classes common in all datasets, road & sidewalk.

Baselines: We compare our results with previously published methods that focus on the monocular
single-camera setting, specifically Translating Images into Maps (TIIM) [29], which was trained
and tested on NuScenes [4], and SkyEye, which was tested on KITTI360-BEV [13]. While newer
methods have been proposed [6, 39], TIIM is the most recent method with available code, to our
knowledge. We follow the training protocols described in the respective papers and code, with slight
modifications to train for static classes. For evaluation, images are processed to meet the requirements
of each method. To test the baseline models on datasets they were not trained on, we follow Gosala
et al. [13] and resize the image to match the focal length of the model’s training dataset. More details
on baseline implementation are provided in supplementary material and appendix.

6 Results & Discussion

We firstly evaluate Mapper zero-shot against the baselines. Next, we test MIA’s effectiveness for
pre-training by finetuning Mapper on limited data from an existing dataset. Finally, we stress test all
models in extreme out-of-distribution scenarios to highlight future opportunities enabled by MIA.

6.1 MIA can go more "anywhere" out-of-the-box

Table 2 demonstrates the generalizability of Mapper, trained with the MIA-ID dataset, over both
zero-shot & fully-supervised baselines, in particular on the NuScenes and MIA-OOD environments.
Fig. 5 visually compares the model predictions, where Mapper provides more realistic predictions
across the datasets compared to the zero-shot baseline, which often fails due to the distribution change
caused by unseen location, different camera models, or severe weather conditions. When comparing
average IoU of Road and Sidewalk, Mapper achieves superior zero-shot result in NuScenes val
[4] and MIA-OOD, with improvements of 33% and 144%, respectively. Notably, in NuScenes and
MIA-OOD, Mapper performs comparably to fully supervised methods (trained with in-domain data)
in road and sidewalk classes. While Mapper performs consistently with TIIM (trained on NuScenes)
when tested on KITTI360-BEV [13], Mapper provides more realistic predictions overall, especially
in non-road regions where TIIM tends to overpredict roads. However, due to the limitations of
KITTI360-BEV, where much of the map is unlabeled and IoU is only measured in labeled regions, as
illustrated in Fig. 6, it is challenging to perform effective benchmarking and comparisons.

6.2 Pre-training on MIA enables effective fine-tuning with limited data

We also test if the MIA dataset can provide effective pretraining for new map prediction tasks.
Specifically, we finetune Mapper with 10% and 1% of NuScenes data. For comparison, we use the
same data split to train TIIM [29]. To fine-tune Mapper, we map the new training dataset classes to
MIA classes as described in Table 5 of appendix. Details on training, fine-tuning and data splits are
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Figure 5: Mapper consistently provides more precise & realistic zero-shot predictions across all
the datasets. Notably, Mapper, empowered by MIA data, can produce zero-shot predictions which
are comparable to the fully-supervised baselines which have been trained on in-domain data.

Figure 6: Lack of complete labels in KITTI360-BEV [20] dilutes quality of benchmarking. For
example, while Mapper predicts sidewalk and road reasonably in this frame, the lack of sidewalk
labels in the ground truth results in a misrepresentative IoU. Meanwhile, TIIM’s [29] road IoU is
artificially higher, despite the incorrect road prediction on the left.

available in the appendix and supplementary material. Table 2d shows that Mapper can be effectively
fine-tuned on specific environments with limited new map prediction data. Notably, the experiment
suggests that MIA provides effective pretraining for map prediction, as fine-tuning the pre-trained
Mapper yields improved results compared to training TIIM solely on the data subset.

6.3 MIA provides challenging settings for future work on anywhere map prediction

To test model generalizability, we further curate MIA-Rural, which is far from the training distri-
bution. Fig. 7 shows an example predictions from highway images where all models, including our
proposed Mapper, fail to generalize. Quantitatively, on the entirety of MIA-Rural, the average IoU
between road and sidewalks (Avg. R, S) is 21.04 for Mapper, 20.55 for TIIM [29] and 18.62 for
SkyEye [13]. This further illustrates the research need for an anywhere map prediction dataset.

7 Conclusion

In this work, we propose MIA, a data curation pipeline aimed at empowering anywhere BEV map
prediction from FPV images. We release a large MIA dataset obtained through the data engine giving
the research community access to 1.2M FPV-BEV pairs to accelerate anywhere map prediction
research. Results from training on the dataset show impressive generalization performance across
conventional map prediction datasets, while on the other hand, provides challenging test cases for the
research community. Our approach departs from the traditional and expensive autonomous vehicle
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Figure 7: Challenging scenarios mined using the MIA data engine: We curate highway images far
from urban environments to stress test models. This showcases our ability to extract challenging and
high-impact test scenarios where current models, including Mapper, do not perform well.

Table 2: Benchmarking across all the datasets in both zero-shot & finetuning setups.
Methods In-Domain Road Crossing Sidewalk Carpark Avg. Avg. R, S
TIIM [29] ✓ 68.63 29.41 27.03 7.70 33.19 47.83

SkyEye [13] × 52.57 0.00 15.47 0.00 17.01 34.02
Mapper × 64.22 0.06 27.71 0.04 23.01 45.97

(a) Zero-Shot NuScenes [4]

Methods In-Domain Road Sidewalk Building Terrain Avg. Avg. R, S
SkyEye [13] ✓ 76.59 40.21 32.47 44.22 48.37 58.40

TIIM [29] × 67.18 10.41 0.0 0.0 19.40 38.80
Mapper × 58.92 11.99 25.08 0.60 24.15 35.46

(b) Zero-Shot KITTI360-BEV [13]

Methods In-Domain Road Crossing Sidewalks Building Parking Terrain Avg. Avg. R, S
Mapper+OOD ✓ 58.28 0.05 30.75 13.80 13.79 6.70 20.56 44.52

TIIM [29] × 32.74 0.00 1.47 0.00 0.00 0.00 5.70 17.11
SkyEye [13] × 33.09 0.00 1.18 5.70 0.00 2.67 7.11 17.14
Mapper × 54.65 0.06 27.55 15.78 2.66 1.83 17.09 41.10

(c) Zero-Shot MIA-OOD

Methods Data % Drivable Crossing Walkway Carpark Mean
Mapper 0% 64.22 0.06 27.71 0.04 23.01

TIIM [29] 1% 57.80 3.11 12.66 0.10 18.42
Mapper 1% 70.83 0.25 26.99 0.08 24.54

TIIM [29] 10% 61.12 23.69 14.52 1.53 25.22
Mapper 10% 75.06 12.41 19.84 0.00 26.83

TIIM [29] 100% 68.63 29.41 27.03 7.70 33.19

(d) Finetuning Mapper on NuScenes [4] data

data collection and labeling paradigm, towards automatic curation of readily-available crowd-sourced
data. We believe this work seeds the first step towards anywhere map prediction.

7.1 Limitations, Biases, Social Impact

While we show promising generalization performance on conventional datasets, we note that label
noise inherently exists, to a higher degree than manually collected data, in crowd-sourced data, in
both pose correspondence and in BEV map labeling. Such noise is common across large-scale
automatically scraped/curated benchmarks such as ImageNet [10]. Moreover, our approach does
not capture dynamic classes as they do not exist in static maps. However, we see our approach as
indispensable for scale and diversity yet complementary to conventionally obtained datasets. While
we recognize that our sampled dataset is biased towards locations in the US, our MIA data engine is
directly applicable to other worldwide locations.

Negative Societal Impact: Our work relies heavily on crowd-sourced data, which places the burden
of data collection on open-source contributors. Additionally, while the FPV images and metadata
from Mapillary are desensitized, there remains a potential risk of reconstructing private information.
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A Appendix

A.1 Filtering Pipeline Yields

Table 3 shows the yield of data samples from the different stages of the MIA curation pipeline. Table 4
presents a statistics breakdown on the locations.

Table 3: The FPV Filtering pipeline stage for the MIA dataset, covering 6 cities, starts by filtering
images based on city boundaries and recency (images after 2017). It then selects 17 camera models
and filters images based on location and angle discrepancies between the SfM rectified pose and
recorded pose (keeping those with less than 20° and 3m discrepancies). Finally, a spatial sparsity
filter removes images within a 4m radius in a sequence.

Curation Stage Boundaries Recency Camera Model Angle Discrip Loc Discrip Spatial
# Images 15.93M 12.21M 3.049M 2.606M 1.353M 1.204M

% Images 100.00% 76.67% 19.15% 16.36% 8.50% 7.56%

Table 4: FPV numbers for the MIA Dataset as the curated data moves from the beginning of the
pipeline (top of table) down to the end. PT: Pittsburgh, NY: New York, CG: Chicago, LA: Los
Angeles, SF: San Francisco, HS: Houston.

Stage PT NY CG LA SF HS ALL

Boundaries 914.1K 3.161M 1.422M 4.150M 2.825M 3451961 15.93M
Recency 867.0K 2.999M 1.281M 4.055M 2.100M 908.5K 12.21M
Camera Model 31.0K 270.5K 478.5K 1.917M 294.9K 57.3K 3.049M
Angle Discrip 25.7K 177.6K 433.6K 1.758M 156.9K 54.0K 2.606M
Loc Discrip 18.0K 89.8K 196.6K 958.6K 59.2K 31.1K 1.353M
Spatial 15.9K 79.2K 162.4K 879.4K 37.7K 29.4K 1.204M

A.2 Dataset Split Visualization

MIA dataset is split into train, validation, and test partitions based on the location. We ensure that the
samples in the three partitions are geographically non-overlapping, as shown in Fig. 8.

A.3 Intra-Dataset Class Mappings

As different dataset captures different map elements, we map the classes from NuScenes and
KITTI360-BEV carefully to MIA, as shown in Table 5.

Table 5: Intra-Dataset Class Mapping for Zero-Shot Experiments

Mapper NuScenes [29] KITTI360-BEV
[13]

Road Drivable Road
Crossing Crossing N/A
Sidewalks Walkway Sidewalk
Building N/A Building
Parking Carpark N/A
Terrain N/A Terrain

A.4 Hyperparameters

We release our pipeline hyperparameters in this section. We use Table 6 in our data engine; Table 7 for
pretraining Mapper using MIA dataset; and Table 8, Table 9 for NuScenes and KITTI-360 fine-tuning.
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Figure 8: MIA Dataset split visualization. Blue for training, green for validation, and red for testing.
We ensure that the splits are geographically non-overlapping for a more robust evaluation.

Table 6: Data Curation Hyperparameters
Parameter Value
α 224
δ 50
ρ 0.5
Recency Filter > 2017
Location Discrepancy 3m
Angle Discrepancy 20°
Sparsity Filter 4m
Camera Models "hdr-as200v", "iphone11pro", "iphone11", "iphone12",

"gopromax", "iphone12pro", "lm-v405",
"iphone11promax", "hdr-as300", "iphone13",
"fdr-x1000v", "sm-g970u", "sm-g930v",
"iphone13promax", "iphone13pro", "iphone12promax",
"fdr-x3000"

A.5 Dataset Privacy and Consent

Our First-Person-View data source, Mapillary [7], employs measures to ensure privacy by blurring
faces and license plates, thereby removing personally identifiable information. Detailed information
on their privacy policy is available here. When users contribute images to Mapillary, these images are
shared under the CC-BY-SA license. Further details on this licensing can be found here.

Our Bird’s Eye Map (BEV) data source, OpenStreetMap [8] provides guidance to limit mapping
private information. Details can be found here.

More licensing information can be found in Table 10.
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Table 7: Pretraining Hyperparameters
Data Model

Parameter Value Parameter Value
Resize Image 512 Backbone Model DINOv2 ViT-B/14 w/

registers
Batch Size 128 Latent Dimension 128
Gravity Alignment Yes Dropout Rate 0.2
Pad To Square Yes Learning Rate 1.00E-03
Rectify Pitch Yes LR Scheduler Cosine Annealing LR
Scenes Chicago, New York, Los

Angeles, San Francisco
Losses Dice Loss + Binary Cross

Entropy Loss
Augmentations Brightness, Contrast,

Saturation, Random Flip,
Hue

Loss Mask Frustum

Class Weights [1.00351229, 4.34782609,
1.00110121, 1.03124678,
6.69792364, 7.55857899]

Table 8: Finetuning (NuScenes) Hyperparameters
Data Model

Parameter Value Parameter Value
Resize Image 512 Backbone Model DINOv2 ViT-B/14 w/

registers
Batch Size 128 Latent Dimension 128
Gravity Alignment Yes Dropout Rate 0
Pad To Square Yes Learning Rate 1.00E-04
Rectify Pitch Yes LR Scheduler Cosine Annealing LR
Scenes All (Only Front Camera) Losses Dice Loss + Binary Cross

Entropy Loss
Augmentations Brightness, Contrast,

Saturation, Random Flip,
Hue

Loss Mask Frustum

Class Weights [1.00060036, 1.85908161,
1.0249052, 2.57267816]

Table 9: Finetuning (KITTI360-BEV) Hyperparameters
Data Model

Parameter Value Parameter Value
Target Focal Length 256 Backbone Model DINOv2 ViT-B/14 w/

registers
Batch Size 32 Latent Dimension 128
Gravity Alignment No Dropout Rate 0.1
Pad To Square Yes Learning Rate 1.00E-04
Rectify Pitch Yes LR Scheduler Cosine Annealing LR
Scenes All (Only Front Camera) Losses Dice Loss + Binary Cross

Entropy Loss
Augmentations Brightness, Contrast,

Saturation, Random Flip,
Hue

Loss Mask Frustum + Visibility

Class Weights [2.5539, 3.8968, 1.9405,
5.6612]

Table 10: Licenses for all projects and datasets used throughout this work. "*" denotes works used
for the development of MIA. "†" denotes works used for evaluation purposes only.

Projects License

Mapillary* [7] CC BY-SA 4.0
Open Street Map* [8] ODbL
MapMachine* [34] MIT License
Nuscenes† [4] CC BY-NC-SA 4.0
KITTI-360† [20] CC BY-NC-SA 3.0
KITTI-360-BEV† [13] Non Commercial Use Only
OrienterNet* [30] CC-BY-SA 4.0
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B Additional MIA data samples

Additional data samples from MIA dataset and associated Mapillary metadata are shown in Figure 9.

Figure 9: Additional MIA data samples and associated metadata

C Mapper Model Architecture

Figure 10: Mapper Architecture

We design a simple model architecture Mapper that can leverage the diverse characteristics of the
MIA dataset. As discussed in the main paper, our model builds on OrienterNet [30] as the front-end
architecture. This choice is made because OrienterNet accommodates different camera characteristics
(e.g. focal lengths and image size) and poses information, thereby leveraging the full information
available from Mapillary.

To incorporate pose information, we adopt OrienterNet’s approach of gravity-aligning the image,
ensuring that each column aligns with a gravity-aligned vertical plane in 3D [30]. Gravity alignment
is essential for matching with OpenStreetMap data, as many Mapillary images are captured from
vehicles on slopes, or from bicycles and hand-held cameras with varying tilt. After gravity alignment,
the image is resized and padded to 512 x 512 pixels.
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The processed, gravity-aligned image is then passed through an image encoder to obtain first-person
view (FPV) features. Unlike OrienterNet [30], we replace its ResNet encoder with a DINOv2 ViT-
B/14 [25] with registers [9] as the image encoder for improved generalizability. The FPV features
are then fed into a linear layer to estimate pixel-wise scores for one of 32 scale (depth normalized
by focal length) bins. These scale scores are then mapped to metric depth scores based on the focal
length. The depth scores are used to project FPV features to generate a bird’s eye view feature map
through polar and Cartesian projections. To adapt OrienterNet [30] to the map prediction task, we
add a decoder head to the BEV features to predict the semantic map.
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